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Abstract. The general theory of neutron scattering is presented, valid for the whole domain of slow neutrons
from thermal to ultracold. Particular attention is given to multiple scattering which is the dominant process
for ultracold neutrons (UCN). For thermal and cold neutrons, when the multiple scattering in the target
can be neglected, the cross-section is reduced to the known value. A new expression for inelastic scattering
cross-section for UCN is proposed. Dynamical processes in the target are taken into account and their
influence on inelastic scattering of UCN is analyzed.
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1 Introduction

Scattering of thermal and cold neutrons with wave-length
0.03 nm ≤ λ ≤ 1 nm is an important tool for investigation
of condensed matter. Due to the absence of charge and
considerably weak interaction with electrons and nuclei
the incident neutron wave goes deep into the target almost
without distortion and coherently influences all atoms of
the target. All specific features of the matter (crystalline
and magnetic structure etc.) show themselves in interfer-
ence of the secondary scattered waves.

Such a simple picture is justified when rescattering of
secondary neutron waves in the target can be neglected.
To estimate rescattering let us compare the amplitude of
the secondary waves at some nucleus with that of incoming
neutron wave (taken as unity). Secondary waves from the
surrounding volume ∼ λ3 add coherently and result in
total amplitude ∼ nλ3(b/λ), where n ∼ 1022 cm−3 is the
density of nuclei and b ∼ 10−12 cm is the neutron-nucleus
scattering length. As long as

nbλ2 � 1, i.e. λ� 100 nm, (1)

the rescattering can be neglected. For ultracold neutrons
(UCN), when λ ≥ 10 nm, the rescattering of neutron wave
in media is very essential, and for the neutron wave vector
k which satisfies k2 < 4πnb, the rescattering becomes the
dominant process and results in the total reflection from
the surface of the target (of course, for positive b). Thus,
the cases of thermal and ultracold neutron scattering differ
from one another, and there are two separate theories for
their description.

a e-mail: barab@pretty.mbslab.kiae.ru

For thermal neutron disregard of the rescattering al-
lows to use Born approximation and to model neutron-
nucleus interaction by Fermi pseudopotential

V (r) =
∑
ν

Vν(r −Rν) =
∑
ν

2π~2

mν
aνδ(r−Rν). (2)

Here r and Rν are the position vectors for a neutron with
mass m and the νth nucleus with mass Mν , respectively,
mν = mMν/(m+Mν) is their reduced mass, aν is the am-
plitude of neutron scattering on free nucleus, connected
with the scattering length αν and impact momentum in
the center-of-mass system kν , in linear on kναν approxi-
mation (valid for slow neutrons), by

aν = αν(1− ikναν). (3)

For thermal neutrons double differential cross-section per
one target nucleus is given by (see, e.g., [1–3])

d2σ

dΩdω
=

k′

2πNk

∑
νν′

b∗νbν′χ(νν′,κ, ω). (4)

Here χ(νν′,κ, ω) is the Fourier transform

χ(νν′,κ, ω) =

+∞∫
−∞

χ(νν′,κ, t)eiωtdt (5)

of correlation function

χ(νν′,κ, t) = 〈i|e−iκR̂ν(t)eiκR̂ν′(0)|i〉, (6)

κ = k−k′ and ω = ε− ε′ are the neutron momentum and
energy transfers. The quantity bν = (m/mν)aν is called
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the scattering amplitude on bound nucleus, and R̂ν(t)
is the time dependent Heisenberg operator of nuclear
position.

The rescattering, i.e. multiple scattering of neutron
wave in the target, which is a dominant process for UCN,
does not allow to use Born approximation, and one should
start from an exact Schrödinger equation for the scattering
problem. As the first step one may use a target model with
fixed (unmovable) nuclei and consider integral equation

Ψk(r) = eikr − m

2π~2

∫
eik|r−r′|

|r− r′| V (r′)Ψk(r′)d3r′. (7)

With a formal use of the Fermi pseudo-potential (2)
equation (7) transforms into

Ψk(r) = eikr −
∑
ν

bν
eik|r−Rν |

|r−Rν |
Ψk(Rν). (8)

The quantity Ψk(Rν) seems to have the meaning of the
neutron wave amplitude on the νth nucleus. This wave
combines the incident wave and all reflected waves. Thus,
the amplitudes Ψk(Rν) are not known in advance, and
consistent equations have to be formulated for these quan-
tities. It is impossible to get the mentioned equations
from (8) just by substitution for neutron position r = Rν

due to infinity in the diagonal term of the right-hand side.
So, it was, in fact, postulated that a proper equation may
be obtained just by throwing away the diagonal term (self-
scattering):

Ψk(Rν) = eikRν −
∑
ν′ 6=ν

bν′
eik|Rν−Rν′ |

|Rν −Rν′ |
Ψk(Rν′). (9)

The equations (8, 9) are today the basis for the whole
theory of ultracold neutron interaction with matter (see,
e.g., [4–7]). From (9) one can get an effective repulsive
(optical) potential on the condensed matter surface, so
the neutron wave with the energy below the threshold is
exponentially decreasing deep into target.

In frames of fixed-nuclei model used for (8, 9) there are
no inelastic processes, and traditional approach to their es-
timate is, first, to calculate distortion of incoming neutron
wave by the target optical potential, and then consider
its interaction with some dynamical excitations (phonons,
surface waves etc.). Such an approach may be somehow
justified for large energy transfer (say, from UCN to ther-
mal domain). As for small energy changes, all estimates
gave negligibly small values for probability, then strong
theoretical justification seemed to be unimportant.

In recent years inelastic scattering of UCN attracts at-
tention of experimenters and quantitative measurements
of small energy changes (small “heating” and “cooling”
of UCN – see, e.g., [8,9]) become more and more precise.
Behavior of UCN in traps may be influenced by many fac-
tors and each experiment needs its own close inspection.
But in any case one needs a well based theory of inelastic
scattering with proper account of dynamical processes in
the trap substance. This appeal from experiments is the
first motivation for this article.

The second motivation is purely theoretical. With dif-
ferent ways of looking at neutron scattering in two energy
domains a general theory, valid for the whole energy range,
seems to be very desirable.

Such a theory should allow expansion in rescattering
on the thermal energy side, turn into (4) when the rescat-
tering is completely neglected and provide corrections in
the next terms. On the UCN side the theory should allow
expansion in dynamical (thermal) motion in the target
matter and give results for the fixed nuclei model at the
first step, and for inelastic scattering at the next step.

General problem of neutron interaction with matter
can be analyzed in the framework of multiple scattering
theory (MST) [10–13]. MST deals with interaction of a
projectile with many-body target. In this theory a formal
solution of many-body problem takes the form

Ψ (+) = Ψ0 + D̂−1
∑
ν

t̂νΨν , (10)

with functions Ψν defined by the set of linear equations

Ψν = Ψ0 + D̂−1
∑
ν′ 6=ν

t̂ν′Ψν′ , (11)

where operators t̂ν (t-matrixes) are linked with potentials
V̂ν by

t̂ν = V̂ν + V̂νD̂
−1t̂ν . (12)

Here Ψ0 is the wave function for noninteracting projectile
and target, and D̂−1 is the “Green function” (see details
in the next section).

There is a wide spread opinion in the literature
that (8, 9) are just the equations of MST (10, 11) for fixed
nuclei target. In fact, they have similar structure but with
some modeled tν . Consistent derivation of (10, 11) analo-
gies for fixed nuclei target with realistic potentials was
done in [14]. In any way, the target model with fixed nu-
clei can be applied only to elastic scattering. While UCN
escape from vessels, which have been studied for many
years, is due mainly to inelastic scattering. Now scatter-
ing of UCN with small energy and momentum transfers
attracts the attention of experimenters as a promising tool
for condensed matter studies [15].

A step from frozen to moving nuclei is very dramatic
since it requires a transition from one body to many-
body function Ψ(r,Rν). MST does not present any uni-
versal solution, since general equations of MST are only
a reformulation of the problem in the way where multi-
ple scattering is clearly exhibited (by using iterated (11)
in (10)). The practical content of MST is, in fact, a set of
approximations applicable for different situations. They
were analyzed, e.g., in the monograph of Goldberger and
Watson [11].

Attempts were made to consider inelastic processes
for UCN by using one of approaches developed in MST
(see, e.g., [16]). However, the approximations used so
far for MST cannot be applied for inelastic scattering
of UCN. Indeed, the main assumptions, that different



A.L. Barabanov and S.T. Belyaev: Multiple scattering theory for slow neutrons (from thermal to ultracold) 61

approximations of MST were based on, may be formu-
lated as:

(a) energy of projectile is much higher than the charac-
teristic energy of target particles (“weak coupling ap-
proximation”);

(b) mean free path of projectile in the target is much
longer than its wave-length;

(c) mean free path of projectile is much longer than the
length of effective correlation between target particles.

The first of these assumptions allows to use Born or
“impulse” approximation, where each target particle may
be considered as free one when colliding with the projec-
tile. The second and the third condition allow to treat
multiple scattering as sequential collisions and represent
the result as a sum on number of collisions executed. Due
to (b) the energy of projectile between successive collisions
is a well-determined quantity, and due to (c) the target in
each collision may be considered as being in the ground
state.

It is easy to see that all three assumptions are not valid
for UCN.

(a) Energy of ultracold neutron is ∼ 10−7 eV and cor-
responds to temperature ∼ 10−3 K which is much
smaller than the target temperature even for liquid
helium.

(b) The usual definition of mean free path fails for UCN
(elastic cross-section for mirror like potential is equal
to the surface area S). Thus, one may use for this
quantity a length of intrusion into the target, which
is of the order of wave-length ∼ 10 nm. It means that
the neutron energy between collisions is, in fact, un-
certain.

(c) The main effect of UCN multiple scattering is appear-
ance of a potential barrier, that is just the product
of particle-particle correlation at distances compared
with neutron wave-length.

The goal of this work is to find the solution of
MST equations valid for the whole domain of slow neu-
trons (from thermal to ultracold), starting from realistic
neutron-nucleus interaction. Equations (4, 8, 9) will fol-
low from this theory as limiting cases. By the solution we
mean the reduction of general equations (10–12) to those
which allow reasonably simple numerical solution for elas-
tic and inelastic scattering for all practically interesting
cases. One numerical solution for inelastic UCN scattering
is presented as an example in the final part of the paper. A
more detailed analysis of inelastic scattering in connection
with specific experiments needs a separate publication.

2 Formulation of the problem. Plan
of solution

A proper theory for UCN scattering should be based on
the following postulates: (i) no Born approximation; (ii)
no use of Fermi potential; (iii) target matter is a dynamical
system. So we should start from N + 1 body Schrödinger

equation(
p̂2

2m
+ Ĥt + V̂

)
|Ψk,i〉 = Ek,i|Ψk,i〉, V̂ =

∑
ν

V̂ν . (13)

Here V̂ν describes interaction of neutron with νth nu-
cleus, p̂ = −i∂/∂r is the operator of neutron momentum,
Ek,i = εk + εi is the total energy as the sum of neutron
energy εk = k2/2m in the state |k〉 and the target initial
energy εi in the state |i〉 that is the eigenstate of the tar-
get Hamiltonian Ĥt. Here and below we keep ~ = 1 till
final physical results.

Equation (13) can be written in integral form

|Ψk,i〉 = |Ψ0
k,i〉+ D̂−1

∑
ν

V̂ν |Ψk,i〉, (14)

where |Ψ0
k,i〉 = |k〉|i〉 and D̂−1 is “Green function” with

D̂ =
k2

2m
+ εi −

p̂2

2m
− Ĥt + iη, (15)

where positive quantity η → 0 provides outgoing neutron
wave asymptotic.

Note, that the problem can be easily reduced to MST
equations (10–12). First, equation (14) can be written in
the form

|Ψk,i〉 − D̂−1V̂ν |Ψk,i〉 = |Ψ0
k,i〉+ D̂−1

∑
ν′ 6=ν

V̂ν′ |Ψk,i〉. (16)

Then, let us define a state vector |Ψν〉 and operator t̂ν by
the relations

|Ψν〉 = |Ψk,i〉 − D̂−1V̂ν |Ψk,i〉, (17)

t̂ν |Ψν〉 = V̂ν |Ψk,i〉. (18)

Now one can see that equations (14, 16) with the help
of (17, 18) turn into (10, 11), respectively. Finally, we
have to show that t̂ν obeys (12). For this purpose we use
identity

V̂ν |Ψk,i〉 = V̂ν(|Ψk,i〉 − D̂−1V̂ν |Ψk,i〉) + V̂νD̂
−1V̂ν |Ψk,i〉,

(19)

that, with the help of (17, 18), transforms into

t̂ν |Ψν〉 = V̂ν |Ψν〉+ V̂νD̂
−1t̂ν |Ψν〉. (20)

Thus we have demonstrated that MST equations are noth-
ing more than reformulation of the general scattering
problem (13) or (14).

It is, of course, impossible to solve the many-body
equation (13) or MST equations (10–12) and to found
the state vectors |Ψk,i〉 or |Ψν〉 without any approxima-
tions. In our problem there are two main small param-
eters: short-range of neutron-target nuclei interaction (as
compared with interatomic distance and wave-length) and
small neutron energy (as compared with depth of interac-
tion potential).
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The first condition allows to consider only s-wave part
of the wave function of neutron-nucleus center-of-mass
motion, when their interaction is evaluated. And the sec-
ond condition allows in this evaluation to neglect the en-
ergy of relative neutron-nucleus motion inside the inter-
action potential area. Thus, the s-wave function and its
derivative, taken at the potential boundary, are indepen-
dent of neutron energy and are just numerical parameters.

No specific model for neutron-nucleus interaction po-
tential will be needed. Its specific features described above
(short range and large depth) allows to use scattering
length approximation.

The small parameters allow to simplify our problem.
Potential Vν is essential only in a small vicinity of Rν. It
differs from zero only when the absolute value of deviation
x = r−Rν does not exceed the potential radius r0ν . Thus,
using completeness of the neutron states

∑
r |r〉〈r| = 1

one has

V̂ν |Ψk,i〉 =
∑
x

|Rν + x〉〈Rν + x|V̂ν |Ψk,i〉

=
∑
x

|Rν + x〉Vν(x)〈Rν + x|Ψk,i〉. (21)

Here and below the sums of continue variables mean the
integrals with the following supposition for position- and
momentum-energy variables∑

R

−→
∫

dR,
∑
q

−→
∫

dq
(2π)3

,
∑
ω

−→
∫

dω
2π
·

(22)

Using (21) one can transform (14) to

|Ψk,i〉 = |Ψ0
k,i〉+ D̂−1

∑
ν

∑
x

|Rν + x〉Vν(x)〈Rν + x|Ψk,i〉.

(23)

After some rearrangement the scalar product of (16) with
〈Rν + x| can be presented as

〈Rν + x|Ψk,i〉
−
∑
x′

〈Rν + x|D̂−1|Rν + x′〉Vν(x′)〈Rν + x′|Ψk,i〉

= 〈Rν + x|Ψ0
k,i〉

+
∑
ν′ 6=ν

∑
x′

〈Rν + x|D̂−1|Rν′ + x′〉Vν′(x′)〈Rν′ + x′|Ψk,i〉.

(24)

Equations (23, 24), as can be seen from the struc-
tures of their right-hand sides, correspond to MST
equations (10, 11). To make them fully determined it re-
mains to find the only key element, namely 〈Rν +x|Ψk,i〉,
i.e. the exact many-body wave function, but only in the
area of short range potential for each nucleus.

Therefore, the many-body problem is reduced to only
two-body problem (or, more precisely, three-body, since
the nucleus is not free), with the rest of the nuclei as

spectators. The solution of the latter problem is deter-
mined by two parameters: by the values of s-wave ampli-
tude χν(r0ν)/r0ν and its derivative at the boundary of the
potential. Since the logarithmic derivative is connected to
the scattering length αν (the known physical quantity),
the amplitude χν(r0ν) remains the only free parameter.

Thus, one may hope to express the quantity
〈Rν + x|Ψk,i〉 by χν(r0ν) and then to use (24) as a set
of linear equations for parameters χν(r0ν). We will call
〈Rν + x|Ψk,i〉 for x = r0ν as “neutron function at the
surface of νth nucleus”.
Remark. The small quantity r0ν will be neglected
whenever possible, except in cases where r0ν stays near
the scattering length (which may be of the same order of
magnitude) and in terms with singularity 1/r0ν till their
compensation. Such singularity occurs in both terms in
the left-hand side of (24) and requirement of their com-
pensation will give us an additional control of calculations.

3 Neutron function at the surface of νth
nucleus

Let us transform the basic equation (13) to new variables

r, R −→ x = r−Rν , R, (25)

where R = {Rν}. The Hamiltonian in the new variables
takes the form

Ĥ = Ĥn + Ĥt −
p̂xP̂ν

Mν
, Ĥn =

p̂2
x

2mν
+ Vν(x), (26)

where p̂x = −i∂/∂x, and P̂ν = −i∂/∂Rν is the momen-
tum operator of νth nucleus. We assume that the quantity
x is small, therefore neutron interaction with other nuclei
(with ν′ 6= ν) is absent.

We look for the solution of the Schrödinger equa-
tion with the Hamiltonian (26) with the energy Ek,i =
k2/2m+εi. In Born approximation in the limit x→ 0 the
solution has the form

Ψk,i(x,R) = ψ(x)eikRνΦi(R), (27)

where ψ(x) is the center-of-mass wave function, and Φi(R)
is the initial target state vector. In the general case the
neutron near the νth nucleus may have the energy differ-
ent from the initial one due to previous collisions. There-
fore, it is natural to look for the solution in the form

Ψk,i(x,R) = ϕ(x)eigRνΦj(R), (28)

where Φj(R) is the eigenfunction of the target Hamilto-
nian Ht with the energy εj and g is a vector parameter
which represents the neutron momentum.

If we substitute (28) into Schrödinger equation with
the Hamiltonian (26) and take into account that operator
P̂ν acts on Φj(R) as well as on the exponent, then we
obtain the following equation for ϕ(x)(
Ĥn +

g2

2Mν
+

gGjν

Mν

)
ϕ− (g + Gjν)p̂x

Mν
ϕ = (Ek,i − εj)ϕ,

(29)
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where

Gjν =
(
P̂νΦj

)
/Φj . (30)

Equation (29) after some formal transformation can be
displayed as(

1
2mν

[
p̂x −

mν

Mν
(g + Gjν)

]2

+ Vν(x)

)
ϕ = E(R)ϕ,

(31)

where

E(R) = Ek,i − εj −
g2

2m
+

1
2mν

[
g − mν

Mν
(g + Gjν)

]2

.

(32)

Formally, (31) is an equation only for the function ϕ, and
its exact solution, as can be easily proved, may be pre-
sented in the form

ϕ(x) = exp
(

i
mν

Mν
(g + Gjν)x

)
Ψ(q,x), (33)

where Ψ(q,x) is the scattering wave-function in the cen-
ter-of-mass system determined by the equation

ĤnΨ(q,x) =
q2

2mν
Ψ(q,x), (34)

and the scattering energy is defined from

q2

2mν
= εi − εj +

k2 − g2

2m
+

1
2mν

[
g− mν

Mν
(g + Gjν)

]2

.

(35)

Thus, the initial problem of neutron scattering on the
bound nucleus seems to be reduced to the problem of
scattering on free nucleus. In fact, it cannot be done pre-
cisely. Indeed, though (33) is formally an exact solution of
the equation (29), its parameter q – impact momentum –
through vector Gjν (30) depends on all coordinates of the
target R. But such a dependence was not assumed in (28).

However, we are looking for the solution valid for small
x. In the limit of small x only the s-wave part χν(x)/x
of the scattering function Ψ(q,x) is of importance and
the dependence of χν on q can be neglected. Therefore,
expression (33) for small x is independent of R and gives
the real solution in the form

Ψk,i(x,R)|x→0 '
χν(x)
x

eigRνΦj(R). (36)

So far the target state j and intermediate neutron mo-
mentum g have not been specified. It is evident, that any
linear combination of functions (36) is allowed (provided
the right-hand side of (35) is non negative), so we finally
obtain

Ψk,i(r = Rν + x,R)|x→0 '
χν(x)
x

eikRν 〈R|ν〉, (37)

where

〈R|ν〉 ≡ Φν(R) =
∑
g,j

Cν(g, j)ei(g−k)RνΦj(R). (38)

Note, that Cν(g, j) = δgkδji and Φν → Φi in Born ap-
proximation.

Expression (37) defines a local structure of the basic
function Ψk,i near the point r = Rν . It naturally con-
tains a “background target function” Φν(R) = 〈R|ν〉, sep-
arately defined for each nucleus. This function differs from
the initial state of the target Φi(R) ≡ 〈R|i〉 due to pertur-
bation by the neutron wave. The functions 〈R|ν〉 should
be consistently determined in parallel to the amplitudes
of the neutron wave χν(r0ν).

Let us now calculate the integral over x in (21). First,
from (37) one finds

〈Rν + x|Ψk,i〉 '
χν(x)
x

eikRν |ν〉. (39)

Second, we note that the state vector |Rν + x〉 due to
smooth dependence on x may be factored out from the
integral and taken at x = 0. Third, from the equation (34)
for χν inside the potential area it follows

Vν(x)χν(x) ' 1
2mν

d2χν(x)
dx2

· (40)

Thus, the integration can be performed∫
Vν(x)

χν(x)
x

dx = − 2π
mν

ανχν(r0ν)
αν − r0ν

, (41)

where we used the relation between scattering length α
and the logarithmic derivative at the boundary of the
potential [χ′/χ]r=r0 = −1/(α − r0). Combining (39, 41)
we get∑

x

|Rν + x〉Vν(x)〈Rν + x|Ψk,i〉 = |Rν〉
2π
m

eikRν |ν〉φν ,

(42)

where we have introduced the amplitude

φν = − m

mν

ανχν(r0ν)
αν − r0ν

· (43)

4 Equations for neutron amplitudes

In the previous section the integrals over x in (24) are
expressed in terms of the amplitudes φν and state vectors
|ν〉. Thus, with the use of (39) the equation (24) takes the
form

χν(x)
x

eikRν |ν〉 − 〈Rν + x|D̂−1|Rν〉
2π
m

eikRν |ν〉φν

= eikRν |i〉+
∑
ν′ 6=ν
〈Rν |D̂−1|Rν′〉

2π
m

eikRν′ |ν′〉φν′ . (44)
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The small quantity x is left only in the terms with singu-
larity 1/x and neglected elsewhere.

Note, that x in (44) is a free parameter, and for
x = r0ν , when χν(r0ν) and φν are linked by (43), rela-
tion (44) may be regarded as a set of linear equations for
φν , but with operators in target states as coefficients could
be hardly used for practical calculations. Our next steps
are directed to simplification of (44).

It is useful to transform the terms with D̂−1 as follows

〈R|D̂−1|R′〉 =
∑
q

eiqRD̂−1
q e−iqR′ , (45)

where

D̂q = 〈q|D̂|q〉 =
k2 − q2

2m
+ εi − Ĥt + iη. (46)

Then from (44) it is evident that to separate the ampli-
tudes one should multiply both sides by e−ikRν and take
their scalar product with the eigenvector 〈j| of Ĥt. Thus,
we have[
mν

m

(
1
αν
− 1
r0ν

)
〈j|ν〉 − ζj(νν,x)|x→r0ν

]
φν =

δij +
∑
ν′ 6=ν

ζj(νν′, 0)φν′ , (47)

where

ζj(νν′,x) =
2π
m

∑
q

eiqx〈j|e−i(k−q)R̂νD̂−1
q ei(k−q)R̂ν′ |ν′〉.

(48)

Expression (48) can be transformed into the other form
with the use of the following presentation of the opera-
tor D̂−1

q

D̂−1
q =

1
i

∞∫
0

ei(εk−εq+εi−Ĥt+iη)tdt. (49)

Then we get the alternative expression for (48)

ζj(νν′,x) =
2π
im

×
∑
q

eiqx

∞∫
0

χj(νν′,k− q, t) ei(εk−εq+εi−εj+iη)tdt. (50)

Here the correlation function is introduced

χj(νν′,κ, t) = 〈j|e−iκR̂ν(t)eiκR̂ν′(0)|ν′〉, (51)

which is a generalization of (6).
To make (47) fully determined, we only need to find an

explicit expression for diagonal term ζj(νν,x) in the limit
x→ r0ν . It evidently has a singularity 1/r0ν which should
compensate analogous term on the left-hand side of (47).

This can be easily seen from simple scaling analysis. Let
us introduce new variables and parameters

q′ = qx, k′ = kx, ε′i − ε′j = (εi − εj)x2, t′ = t/x2.

(52)

Then small parameter x remains in (50) only as the com-
mon factor 1/x and inside χj in the argument of Rν(t′x2).

When ν = ν′, the operator in matrix element (51) is
close to unity with very small deviation ∼ uκ, where u is
a nuclear shift from equilibrium. Thus, it seems to be a
good approximation to integrate over t in (50) only the
exponential factor outside the matrix element. Then the
integration over q gives

ζj(νν,x) ' −eikjx

x
〈j|ν〉, (53)

where

k2
j = k2 + 2m(εi − εj). (54)

Note, that kj is the absolute value of the momentum of
inelastically scattered neutron when the target remains in
the eigenstate |j〉.

However, this result is evidently wrong. Since it does
not cancel the singularity 1/r0ν in the left-hand side
of (47) due to the additional factor mν/m. Thus, the ma-
trix element χj should be more accurately estimated.

The limit x → 0 means that only small time interval
is of importance in Rν(t) = Rν(t′x2), and we can use the
expansion

R̂ν(t) ' R̂ν(0) +
P̂νt

Mν
· (55)

Each additional power in t will result in an additional
factor x2. After substitution of (55) into (51), the matrix
element is calculated without any approximations. Using
the identity exp(Â) exp(B̂) = exp(Â + B̂ + [Â, B̂]/2), we
obtain

χj(νν,k− q, t)|t→0

−→ 〈j| exp

(
−i

[
(k− q)P̂ν

Mν
+

(k− q)2

2Mν

]
t

)
|ν〉. (56)

Then integration over time and elementary transformation
give

ζj(νν,x)|x→0 =

4π
mν

m

∑
q

〈j| eiqx

k2
ν − q2

ν + 2mν(εi − εj) + iη
|ν〉, (57)

where

kν = k− mν

Mν
(P̂ν + k), qν = q− mν

Mν
(P̂ν + k). (58)

The physical meaning of (58) is evident: kν and qν are
the momenta in the center-of-mass system. This transition
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to the center-of-mass system provides additional factor
mν/m.

Finally, integrating over q and taking into account only
s-wave part in x we get

ζj(νν,x)|x→0 = −mν

m

(
1
x
〈j|ν〉+ i〈j|K̂jν |ν〉

)
, (59)

where the operator K̂jν , defined from

K̂2
jν =

[
k− mν

Mν
(P̂ν + k)

]2

+ 2mν(εi − εj), (60)

has the meaning of absolute value of the impact momen-
tum in the center-of-mass system for the neutron and νth
target nucleus when the target is in the state |j〉. For UCN
this quantity is defined mostly by the average absolute
value of nuclear momentum.

The limiting value (59) allows to get the explicit form
of equation (47) for the amplitudes φν . With the help
of (59) we verify that for x = r0ν singular terms 1/r0ν are
canceled out and the next terms result in

1
βν
〈j|ν〉φν + i

mν

m
〈j|K̂jν |ν〉φν = δij +

∑
ν′ 6=ν

ζj(νν′)φν′ ,

(61)

where the renormalized scattering length (“on bound nu-
cleus”) is introduced

βν =
m

mν
αν . (62)

With the use of (50) the matrix ζj(νν′) ≡ ζj(νν′, 0) can
be expressed in terms of Fourier transforms of correlation
functions (51)

ζj(νν′) = 4π
∑
q,ω

χj(νν′,k− q, ω)
k2
j − q2 − 2mω + iη

· (63)

Now we note that any state vector |ν〉 can be presented
as a series in target eigenfunctions

|ν〉 =
∑
j

|j〉〈j|ν〉. (64)

Therefore the relations (61) are really the linear equations
for the amplitudes

φjν = 〈j|ν〉φν . (65)

Indeed, we get

1
βν
φjν + i

mν

m

∑
j′

〈j|K̂jν |j′〉φj
′

ν = δij +
∑

j′,ν′ 6=ν
ζjj′(νν′)φ

j′

ν′ .

(66)

The coefficients of these equations

ζjj′(νν′) =
2π
m

∑
q

〈j|e−i(k−q)R̂νD̂−1
q ei(k−q)R̂ν′ |j′〉

= 4π
∑
q,ω

χjj′(νν′,k− q, ω)
k2
j − q2 − 2mω + iη

(67)

with

χjj′(νν′,κ, ω) =

+∞∫
−∞

χjj′(νν′,κ, t)eiωtdt,

χjj′(νν′,κ, t) = 〈j|e−iκR̂ν(t)eiκR̂ν′(0)|j′〉, (68)

are completely determined by the properties of target mat-
ter, i.e. by the matrix elements of the operator of νth
and ν′th nuclei position correlation between the target
eigenfunctions.

Equations (66) are obtained from (24) or (11). How-
ever, they deal not with N+1 body state vectors |Ψk,i〉 or
|Ψν〉 but with numerical parameters φjν . It is easy to see
that due to (42, 23) the total wave function |Ψk,i〉 can be
expressed in terms of the same parameters, namely,

|Ψk,i〉 = |Ψ0
k,i〉+ D̂−1

∑
j,ν

|Rν〉
2π
m

eikRν |j〉φjν . (69)

It means that scattering probability and scattering cross-
section are also determined by φjν . The relation between
them is analyzed in the next section.

5 Scattering problem and neutron amplitudes

Scattering process with a fixed final state 〈j| of the target
is usually called a transition into the jth reaction channel.
The wave function in the jth channel can naturally be
defined by

Ψij(r) = 〈r, j|Ψk,i〉. (70)

From (69) it follows

Ψij(r) = δijeikr +
2π
m
〈j|
∑
j′,ν

φj
′

ν 〈r|D̂−1|Rν〉eikRν |j′〉.

(71)

Then using (45, 46) we have

Ψij(r) = δijeikr + 4π
∑
j′,ν

φj
′

ν 〈j|
∑
q

eiq(r−R̂ν)

k2
j − q2 + iη

eikR̂ν |j′〉,

(72)

where kj was introduced by (54). After integration over q
we finally obtain

Ψij(r) = δijeikr −
∑
j′,ν

φj
′

ν 〈j|
eikj |r−R̂ν |

|r− R̂ν|
eikR̂ν |j′〉. (73)

In asymptotic, when r → ∞, we get from (73) for the
scattered wave the usual structure

fij(k,kj)
eikjr

r
, (74)
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where the scattering amplitudes in reaction channels are
given by

fij(k,k′) = −
∑
j′,ν

φj
′

ν 〈j|ei(k−k′)R̂ν |j′〉. (75)

The final momentum k′ ≡ kj is defined by kj = kj(r/r).
It is instructive to note that in Born approximation

with pseudopotential (2) the following expression for the
scattering amplitude can be obtained:

fij(k,k′) = −
∑
ν

bν〈j|ei(k−k′)R̂ν |i〉. (76)

It is analogous to (75) but instead of φjν it has the scat-
tering amplitude on an bound nucleus, and the matrix
element is taken between unperturbed states 〈j| and |i〉.
Remark. A typical target model used for ultracold neutron
reflection is a semi-infinite substance. The asymptotic pro-
cedure used above to extract the scattering amplitude (75)
from the wave function, strictly speaking, is incorrect for
an infinite target. Therefore, we shall assume our target
to be finite with some plane surface area S, which is large
enough to use in parallel planes the continuum spectrum,
orto-normalized with δ(k′‖ − k‖) instead of δk′‖k‖ , but al-
lows us, when necessary, to make the replacement[

(2π)2δ(k′‖ − k‖)
]2
−→ S(2π)2δ(k′‖ − k‖). (77)

In the case when transmission is also of importance we
need to consider the target of finite width to allow asymp-
totic in both directions.

The cross-section for the reaction i → j can be ob-
tained from the scattering amplitude by

dσij =
k′

k
|fij(k,k′)|2dΩ′, (78)

but the final state of the target is usually not fixed and in-
elastic processes are measured by the energy transfer. This
process is described by double differential cross-section

d2σ

dΩ′dε′
=
k′

k

∑
j

|fij(k,k′)|2δ(εi − εj + εk − εk′). (79)

It is useful to consider the quantity

w(k,k′) =
∑
j

∣∣∣∣2πm fij(k,k′)
∣∣∣∣2 2πδ(εi − εj + εk − εk′),

(80)

then w(k,k′)dk′/(2π)3 is the scattering probability per
unit time from the fixed state |k〉 to the states |k′〉 into
the momentum space element dk′. The scattering proba-
bility (80) divided by the incident neutron flux k/m gives
the cross-section to find the final neutron with momen-
tum k′, and one is free to choose parameters in k′ to be
fixed in the final state and then integrate over the rest of

these parameters. The relation between w(k,k′) and the
cross-section is evident from the equality

m

k

∫
w(k,k′)

dk′

(2π)3
=
∫

d2σ

dΩ′dε′
dΩ′dε′. (81)

So, the cross-section of inelastic scattering with energy
loss ω is given by

dσ
dω

=
m

k

∫
w(k,k′)δ(εk − εk′ − ω)

dk′

(2π)3
· (82)

Replacing delta-function in (80) by the integral over t and
using (75) one can sum in (80) over the final states j as∑
j′′

ei(εj−εj′′)t〈j|e−i(k−k′)R̂ν |j′′〉〈j′′|ei(k−k′)R̂ν′ |j′〉 =

χjj′(νν′,k− k′, t), (83)

where χjj′(νν′,κ, t) (as well as its Fourier transform) was
introduced by (68). Then (80) takes the form

w(k,k′) =
(

2π
m

)2

×
∑
jj′νν′

φj∗ν φ
j′

ν′χjj′ (νν
′,k− k′, ω + εi − εj). (84)

The corresponding equation for the double differential
cross-section is

d2σ

dΩdω
=

k′

2πk

∑
jj′νν′

φj∗ν φ
j′

ν′χjj′(νν
′,k− k′, ω + εi − εj).

(85)

We have now the scattering amplitude (75) and scattering
probability (84) expressed by the neutron amplitudes φjν ,
which are determined by the equation (66).

6 The case of thermal and cold neutrons

Here we address to the neutrons with momenta in the
range

√
4πnα� k � 1/α, (86)

for which the rescattering processes are not important and
may be considered as small perturbation.

In the first approximation the last term in (66) may
be neglected and we obtain

φjν = δij
βν

1 + i〈i|K̂iν |i〉αν
' δijβν

(
1− i〈i|K̂iν |i〉αν

)
,

(87)

which is similar to the expression (3) for the amplitude of
neutron scattering on the isolated nucleus. The only dif-
ference is that instead of impact momentum in (3) (nat-
ural parameter for two-body problem), (87) contains the
average value of this parameter over nuclear ensemble in
the target. After substitution of (87) into (85) we obtain
the known expression (4) for thermal neutron scattering
cross-section.
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7 Renormalized amplitudes for condensed
target

Up to now no assumptions were made on the target mat-
ter. For a condensed target the results can be presented
in more visual form.

Let us suppose

Rν = ρν + uν , (88)

where for solid state target ρν is the equilibrium position
of the target nucleus, and uν is the shift from the equi-
librium. For liquids ρν and uν may be understood as an
average position and a fluctuation, respectively. Note, that
index ν may be now replaced by ρ. When useful we shall
make such replacement without notice.

The matrix χjj′(νν′,κ, t) is transformed now into

χjj′(νν′,κ, t) = e−iκ(ρν−ρν′)〈j|e−iκûν(t)eiκûν′(0)|j′〉.
(89)

For the model with fixed (unmovable) nuclei the matrix
element in (89) equals to δjj′ . In order to separate the
effect of nuclei motion let us write

χjj′(νν′,κ, t) = e−iκ(ρν−ρν′ ) (δjj′ + χ̃jj′ (νν′,κ, t)) ,
(90)

where

χ̃jj′ (νν′,κ, t) = 〈j|e−iκûν(t)eiκûν′(0) − 1|j′〉. (91)

To simplify the equation (66) let us replace ζjj′ (νν′) (67)
by a new matrix Gjj′ (νν′) from

ζjj′ (νν′) = −e−ik(ρν−ρν′)Gjj′(νν′). (92)

Then introducing the new amplitude

ψj(ν) =
1
βν
φjνeikρν , (93)

we obtain the equation

ψj(ν) = δijeikρν −
∑
j′ν′

Gjj′ (νν′)ψj′(ν′)βν′ , (94)

where the diagonal in ν and ν′ term is of the form:
Gjj′(νν) = i(mν/m)〈j|K̂jν |j′〉. Note, that according
to (59) this diagonal term is equal to −ζjj′(νν,x) in the
limit x → 0 but without its real part in contrast with
the non-diagonal terms. In the long wave-length limit the
sum in (94) may be replaced by the integral over ν′. In
this case it is not necessary to give special attention to the
point ν′ = ν, since the real part of the term with ν′ = ν
though singular but integrable does not contribute to the
integral.

For the matrix Gjj′ (νν′) we have from (67, 90, 92)

Gjj′ (νν′) = δjj′Gj(νν′) + G̃jj′ (νν′) (95)

with

Gj(νν′) = −4π
∑
q

eiq(ρν−ρν′)

k2
j − q2 + iη

=
eikj |ρν−ρν′ |

|ρν − ρν′ |
, (96)

G̃jj′ (νν′) = −4π
∑
q,ω

eiq(ρν−ρν′) χ̃jj′(νν
′,k− q, ω)

k2
j − q2 − 2mω + iη

,

(97)

where Fourier transform of χ̃jj′(νν′,κ, t) (91) is intro-
duced.

The scattering amplitudes in reaction channels (75) in
the new notations are given by

fij(k,k′) = −
∑
j′,ν

e−ik′ρν 〈j|ei(k−k′)ûν |j′〉ψj′(ν)βν . (98)

The scattering probability can be found with (98, 80) or
directly from (84) with (93, 94).
Remark. In Appendix we obtain an alternative form
of (94, 98), which may be useful for some approximations.

8 Unitarity condition

The flux of neutrons incident on the target should be equal
to the total flux in all scattering and reaction channels. As
will be proved in this section, this unitarity condition is
satisfied by the general theory suggested.

It is convenient to rewrite the general equation (94)
for neutron amplitudes in the form

δijeikρν = ψj(ν) +
∑
j′ν′

Gjj′(νν′)ψj′(ν′)βν′ , (99)

and after complex conjugation as

δije−ikρν = ψ∗j (ν) +
∑
j′ν′

G∗jj′(νν
′)ψ∗j′(ν

′)β∗ν′ . (100)

Multiplying (99) by ψ∗j (ν)β∗ν and (100) by ψj(ν)βν , then
summing over j, ν and subtracting one equation from the
other we get

2i Imfii(k,k) =
∑
jν

(−2i Imβν)ψ∗j (ν)ψj(ν)

+
∑
jj′νν′

ψ∗j (ν)ψj′(ν′)β∗νβν′
(
Gjj′ (νν′)−G∗j′j(ν′ν)

)
,

(101)

where equation (98) for scattering amplitude is taken into
account.

The kernelsG andG∗, as seen from (67, 92), differ only
in path directions around the poles on complex q plane,
and their difference can be presented in the form

Gjj′(νν′)−G∗j′j(ν′ν) = −2π
m

∑
q

eiq(ρν−ρν′)

× 〈j|e−i(k−q)ûν
(
D̂−1
q − (D̂−1

q )+
)

ei(k−q)ûν′ |j′〉. (102)
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Operator D̂−1
q has the form (a + iη)−1 and due to the

equality (a + iη)−1 = −iπδ(a) + P(1/a) only the delta-
function part remains in combination D̂−1

q − (D̂−1
q )+.

Thus (102) is reduced to

Gjj′(νν′)−G∗j′j(ν′ν) =
i

2π

∫
dn′′

∑
j′′

kj′′eikj′′(ρν−ρν′)

× 〈j|e−i(k−kj′′ )ûν |j′′〉〈j′′|ei(k−kj′′ )ûν′ |j′〉, (103)

where n′′ = kj′′/kj′′ .
Putting this result in (101) and taking into ac-

count (98) we get total cross-section σt as a sum of capture
cross-section σc and total scattering cross-section σs:

σt =
4π
k

Imfii(k,k) = σc + σs, (104)

where

σc =
∑
jν

(
−4πImβν

k

)
|ψj(ν)|2, (105)

σs =
∑
j

kj
k

∫
|fij(k,k′)|2dn′. (106)

Note that the capture cross-section is determined by imag-
inary parts of scattering lengths αν and βν = mαν/mν

(−4πImα/k is the capture cross-section for free nucleus).

9 Interim summary

Let us sum up our results. To satisfy MST equations we
have to find N state vectors Ψν and N operators t̂ν . The
problem is reduced to the set of linear equations (66) for
numerical parameters φjν . The price for this reduction is
additional index j which arises due to introduction of un-
known state vector |ν〉 for each target nucleus. However,
if φjν = 〈j|ν〉φν are found then one can deduce Ψν and t̂ν .

Indeed, equations (61, 66) were directly obtained
from (44), where the left-hand side has the meaning of
〈Rν |Ψν〉. Following back from (61) to (44) one can deduce
for Ψν

|Ψν〉 = |Rν〉eikR̂ν
1
βν

(
1 + iανK̂ν

)
|ν〉φν , (107)

where

K̂ν =
∑
j

|j〉〈j|K̂jν . (108)

On the other hand, if to compare (69) with (10), one can
obtain combination

t̂ν |Ψν〉 =
2π
m
|Rν〉eikR̂ν |ν〉φν . (109)

From (108) and (109) it follows for t̂ν

t̂ν =
2π
m
|Rν〉eikR̂ν

(
1 + iανK̂ν

)−1

βνe−ikR̂ν 〈Rν |. (110)

This expression for t̂ν is rather complicated due to non-
commuting in target space operators K̂ν and R̂ν .

Remark. In (17) Ψν seems to be a state vector in N+1
dimensional space (r,R). However, for short-range t̂ν the
total wave function Ψk,i is really determined by Ψν at r =
Rν. This part, in fact, is given by (107).

For fixed nuclei K̂ν → kν is the center-of-mass impact
momentum and from (110) it follows

〈r|t̂ν |r′〉 −→
2π
m

βν
1 + iανkν

δ(r−Rν)δ(r− r′), (111)

that, with the help of (3, 62), coincides with Fermi pseu-
dopotential (2). Just in this approximation (8, 9) follow
from (10, 11), respectively.

Fortunately, in the general case all physical quantities
can be obtained directly from the amplitudes φjν or ψj(ν)
and matrices t̂ν are not needed. Thus we reduce MST
equations (10, 11) to systems (66) for φjν or (94) for ψj(ν).

Let us emphasize, that the only approximations used
so far are those for the interaction potential. It was as-
sumed to be a short range and relatively deep, which is
equivalent to scattering length approximation for the in-
teraction.

The relation of our equations to the traditional theory
for thermal neutrons was demonstrated in Section 6. For
thermal and cold neutrons the structure of equations (66)
may be radically simplified due to the physically justifiable
neglect of rescattering of the secondary neutron waves in
the target.

Our main goal here is UCN. The relation to the tradi-
tional theory for (elastic) scattering of UCN will be consid-
ered in details below. It is physically evident, that transi-
tion to that theory should occur due to the neglect of the
thermal motion of the target nuclei, which provides the
radical simplification of the correlation function (89):

χjj′(νν′,κ, t) ' δjj′e−iκ(ρν−ρν′). (112)

The amplitudes of the thermal motion are very small in-
deed as compared to the UCN wave-length and the ap-
proximation (112) for χjj′ seams to be justified. But if
the thermal motion is totally neglected there is no possi-
bility for inelastic scattering. Thus, for inelastic processes
we need to include the thermal motion but may expect
proper simplification since perturbation procedure is jus-
tified.

The rest of the paper is devoted to a perturbational
solution of the main equation (94) for ψj(ν).

10 Expansion over the amplitudes of thermal
vibrations

10.1 Zero order (elastic) approximation

In the long wave-length limit (κu� 1) it follows from (91)

χ̃jj′(νν′,κ, t)� 1, (113)
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which, in its turn, leads to the inequality

G̃jj′(νν′)� Gj(νν′). (114)

These inequalities open a possibility for the application of
a perturbation theory.

Physically (113, 114) mean that in this limit the basic
process of neutron-target interaction is elastic scattering
and the probability of inelastic processes is small.

If we neglect χ̃jj′ then we obtain from (94) an equation
for the amplitude ψ(0)

j (ν) in zero order approximation

ψ
(0)
j (ν) = δijeikρν −

∑
ν′

Gj(νν′)ψ
(0)
j (ν′)βν′ . (115)

As seen from (115), the equations for different j are sepa-
rated, and since inhomogeneous term contains the factor
δij , we have

ψ
(0)
j (ν) = δijψ(ν), (116)

where ψ(ν) is defined by the equation

ψ(ν) = eikρν −
∑
ν′

G(νν′)ψ(ν′)βν′ (117)

with the matrix

G(νν′) ≡ Gi(νν′) = −4π
∑
q

eiq(ρν−ρν′ )

k2 − q2 + iη
=

eik|ρν−ρν′ |

|ρν − ρν′ |
·

(118)

Note, that the singular real part of diagonal (ν′ = ν) term
in (118) as discussed after (94) should be extracted, that
results in G(νν) = ik.

The equation (117) is similar to formula (9) usually
used for UCN in the target model with fixed (i.e. in fact,
infinitely heavy) nuclei and transforms to it by redefini-
tion Ψk(ν) = ψ(ν)(1 + ikβν) [14]. Its solution is basically
simplified when the sum over ν is replaced by the integral
over ρ. Then after acting on (117) with operator ∆ + k2

it is reduced to Schrödinger equation with the potential

U =
2π
m
nβ, (119)

where the density of the target n and scattering length β
may depend on ρ.

Formally, equation (117) after replacement of the sum
by integral

∑
ν →

∫
ndρ becomes of a linear integral type.

Such a replacement, if useful, will be performed below
without special notice. On the other hand, to make pre-
sentation of general formulae in more compact and trans-
parent form it is useful to consider all G(νν′) as matri-
ces, ψ(ν) and eikρν – as columns, ψ∗(ν) and e−ikρν – as
rows and omit summation indices ν and ν′. In this nota-
tion (117) looks as

ψ +Gψβ = eikρ. (120)

As seen from (118), the kernel G(k, νν′) depends on the
absolute value k, but the solution ψ(k, ν) depends on the
vector k, defined by inhomogeneous term on the right-
hand side.

The scattering amplitude (98) in zero order approxi-
mation is given by

f
(0)
ij (k,k′) = −δijψ(k,k′), (121)

where special notation is introduced for β-weighted
Fourier-transform of the amplitude ψ(k, ν)

ψ(k,q) =
∑
ν

e−iqρνψ(k, ν)βν . (122)

Scattering probability (80) in zero order approximation
has the form

w(0)(k,k′) =
(2π)3

m2
δ(ω) |ψ(k,k′)|2 . (123)

Thus from (81) we obtain differential cross-section of elas-
tic scattering

dσ(0)
el

dΩ
= |ψ(k,k′)|2 , (124)

where |k′| = |k|.

10.2 Approximations of the first and the second order.
Inelastic scattering

Zero order amplitude given by (121) corresponds to elastic
scattering. Thus, the probability (80) for inelastic scatter-
ing starts from the second order term which is determined
by the first order scattering amplitude

w
(2)
ie (k,k′) = 2π

∑
j

∣∣∣∣2πm f
(1)
ij (k,k′)

∣∣∣∣2 δ(εi − εj + εk − εk′).

(125)

Introducing an expansion in κu for neutron amplitudes

ψj(ν) = δijψ(ν) + ψ
(1)
j (ν) + . . . , (126)

we obtain from (98)

f
(1)
ij (k,k′) = −ψ(1)

j (k,k′)

− i(kσ − k′σ)
∑
ν

e−ik′ρν 〈j|ûσν |i〉ψ(ν)βν , (127)

where the first term is β-weighted Fourier compo-
nent (122) of the first order amplitudes ψ(1)

j defined by
the equation

ψ
(1)
j +Gjψ

(1)
j β = −G̃(1)

ji ψβ. (128)
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Matrix G̃
(1)
jj′ (νν

′) is the first order term which follows
from (91, 97)

G̃
(1)
jj′ (νν

′) = (∇σν − ikσ) (〈j|ûσν |j′〉Gj′(νν′)
−Gj(νν′)〈j|ûσν′ |j′〉) , (129)

where ∇σν = ∂/∂ρσν .
Fourier component ψ(1)

j (k,k′) can be found without an
explicit solution of equation (128). First, let us introduce
the function

ψ̄(k′, ν) = ψ(−k′, ν), (130)

determined by the equation

ψ̄ + βψ̄Ḡ = e−ik′ρ, (131)

where we consider ψ̄ as row, and Ḡ(νν′) ≡ Gj(νν′). Then,
multiplying (128) by βψ̄ from the left and using (131), we
obtain in the left-hand side just the Fourier component
that we are looking for. Therefore we have

ψ
(1)
j (k,k′) = −βψ̄G̃(1)

ji ψβ. (132)

Right-hand side of this equation can be simplified with
the help of (120, 131, 129). Then, we finally obtain

ψ
(1)
j (k,k′) =

∑
ν

βν〈j|ûσν |i〉∇σν
(
ψ̄(ν)ψ(ν)

)
− i(kσ − k′σ)

∑
ν

e−ik′ρν 〈j|ûσν |i〉ψ(ν)βν . (133)

Inserting (133) into (127) we get for the first order scat-
tering amplitude

f
(1)
ij (k,k′) = −

∑
ν

βν〈j|ûν |i〉∇ν

(
ψ̄(k′, ν)ψ(k, ν)

)
.

(134)

Remark. An alternative derivation of expres-
sions (121, 134) is given in Appendix.

The probability of inelastic scattering (in the second
order) follows from (125, 134)

w
(2)
ie (k,k′) =

(
2π
m

)2 ∑
jνν′

β∗νβν′

×∇σν
(
ψ̄(k′, ν)ψ(k, ν)

)∗∇τν′ (ψ̄(k′, ν′)ψ(k, ν′)
)

×
+∞∫
−∞

ei(εi−εj+εk−εk′ )t 〈i|ûσν |j〉〈j|ûτν′ |i〉dt. (135)

Summation over j can be explicitly performed accord-
ing to∑

j

ei(εi−εj)t〈i|ûσν |j〉〈j|ûτν′ |i〉 = 〈i|ûσν (t)ûτν′(0)|i〉. (136)

This diagonal matrix element may exhibit a spatial depen-
dence only as a function of ρν − ρν′ and therefore allows
a Fourier transform

〈i|ûσν (t)ûτν′(0)|i〉 =
∑
q,ω

eiq(ρν−ρν′ )−iωtΩστ (q, ω). (137)

Then, we finally obtain for the probability of inelastic
scattering

w
(2)
ie (k,k′) =

(2π)3

m2

×
∑
q,ω

δ(εk − εk′ − ω)Bσ∗(q)Bτ (q)Ωστ (q, ω), (138)

where

B(q) =
∑
ν

βνe−iqρν∇ν
(
ψ̄(k′, ν)ψ(k, ν)

)
. (139)

The cross-section for neutron to lose energy ω can be cal-
culated from (82, 138)

dσ(2)
ie

dω
=

(2π)2

mk

∑
q,k′

δ(εk − εk′ − ω)Bσ∗(q)Bτ (q)Ωστ (q, ω).

(140)

To disclose physical meaning of (140) it is instructive
to compare it with corresponding expression which can
be obtained from (4). To make the comparison one
should transform the correlation function χ(νν′,κ, ω) to
Ωστ (q, ω) (137). Expanding χ(νν′,κ, ω) in κu by the use
of (88, 89) we get

χ(νν′,κ, ω) = 2πδ(ω)e−iκ(ρν−ρν′)
(
1− 〈(κûν)2〉

)
+ e−iκ(ρν−ρν′)κσκτ

+∞∫
−∞

〈i|ûσν (t)ûτν′(0)|i〉eiωtdt. (141)

Now it is easy to see that the cross-section with energy
loss (see (81, 82)), obtained from (4, 141), can be reduced
to the form (140) with

B̃(q) = i(k− k′)
∑
ν

bνe−iqρν ei(k−k′)ρν (142)

instead of B(q) (139). The difference (apart from fac-
tor N) is that functions ψ(k, ν) and ψ̄(k′, ν) in (139) are
replaced by the plane waves eikρν and e−ik′ρν , respectively.
It is very natural since (4) is obtained in Born approxima-
tion.

So, it can be said that (140), similar to (4), takes
into account the interference of two scattered waves (that
result in inelasticity), but, in addition, uses wave functions
in both input and output channels modified by rescatter-
ing.

The idea to modify (4) for UCN by replacing the plane
waves with the solutions of equation (9) is very natural
and was tried in several papers (see, e.g., [17]). But it is
evident that if to do it in (142) the result will not coincide
with (139).
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11 Choice of correlation function

Inelastic processes with energy and momentum exchange
between neutron and target are essentially determined by
the dynamical properties of target matter, i.e. collective
excitations that are suitable (for given conservation lows)
to provide this exchange. Correlation function that enters
the cross-section just describes these dynamical proper-
ties. The physical meaning of correlation function is that
it describes space-time evolution of a fluctuation appeared
at some moment in some position point.

The field of correlation functions is covered in a num-
ber of books and review articles (see, e.g., [3,18,19]). Here
we shall just mention a few details necessary for what fol-
lows.

Our function (137) is related to density fluctuations

1
2πN

〈
∫
n̂(r′ + r, t)n̂(r′, 0)dr′〉 =

∑
q,ω

eiqr−iωtS(q, ω).

(143)

Fourier transform S(q, ω) (often denoted as “dynami-
cal structure factor”) can be shown to be connected
with (137) by

S(q′, ω) ' n

2π
qσqτΩστ (q, ω), (144)

where the quantities q′ and q are equal but for crystals
may differ by a reciprocal lattice vector.

For simple model of harmonic crystal one can easily
obtain (for phonon occupation factors nq � 1)

Ωστ (q, ω) ' δστ
2T

nMs2

π

|ω|δ
(
q2 − ω2

s2

)
, (145)

where T is the temperature and s is the velocity of sound.
Sound branch of excitation is effective for large energy

and momentum transfer (say, from UCN to thermal), but
very ineffective for small transfer (of the order of initial
energy and momentum of UCN). The reason is, in fact,
that neutron dispersion low ε ∼ vk is quite different from
that of sound ω = sq because for UCN v/s ∼ 10−3, and
one cannot satisfy two requirements ∆ε ∼ ω and ∆k ∼
q simultaneously. For small transfers we need excitations
with small ω and q.

The limiting value of correlation function for ω, q→ 0
is given by the “hydrodynamic value”

Ωστ (q, ω) ' qσqτ

q2

2T
nMs2

αD

ω2 +D2q4
, (146)

where D is the coefficient of any diffusion-like process,
e.g., the self- or thermo-diffusion coefficient (in the latter
case α = cP /cV − 1, in the former case α = 1). At normal
temperature parameter α = cP /cV − 1 is of the scale of
10−2 for solids and of 10−1 for liquids.

Function (146) for fixed q has a pick value for ω = 0
and width ∼ Dq2 in contrast to (145), where ω and q are

strongly coupled (ω = sq). Instead of D it is useful to
introduce a dimensionless parameter

d =
2mD
~

, (147)

which appears when dimensionless variables ω/εk and q/k
are considered. One may expect that the optimal con-
ditions for small energy ε ∼ ~ω and momentum k ∼ q
transfer would be when this parameter d is of the order
of unity. In reality at normal temperature d varies from
∼ 103 (metals with high thermoconductivity) to ∼ 10−2

(self-diffusion in liquids).
The total correlation function includes the phonon

part (145) as well as all types of diffusion-like parts (146).
All these parts are linearly summed in cross-section and
their contributions can be calculated separately.

12 Subbarrier inelastic scattering

To consider a specific inelastic scattering problem with
general formula (140) one needs, first, to find zero order
(elastic) neutron amplitudes for input and output channels
ψ(k, ν) and ψ̄(k′, ν) and, second, to choose a correlation
function that adequately describes collective excitations
of target matter in energy-momentum domain of interest.

As illustrative example we consider scattering on a
thick uniform plane target when neutron energies in input
and output channels are both below the potential barrier.
Let z axis be perpendicular to the surface of the target
located at z > 0. After replacing discreet variable ν by
uniform ρ, one can reduce integral equations (120, 131)
to Schrödinger equation

(k2 +∆)ψ(r) = u(z)ψ(r), (148)

where the potential u(z) = 4πβn(z) is determined by the
target density

n(z) =
{
n, z > 0,
0, z < 0. (149)

The equations for the cross-section contain the values of
ψ(r) and ψ̄(r) only inside the target, but solutions for
them are determined by the inhomogeneous terms of inte-
gral equations (120, 131). For the solutions of Schrödinger
equation (148) they have the meaning of waves incident
on the target. We split the neutron momentum k in in-
put channel into components k‖ and k⊥ez along and nor-
mal to the target surface. We assume in what follows that
k2
⊥ ≤ k2 < u0 = 4πβn.

The solution of (148) for incident neutron in the region
z > 0 is of the form

ψ(r) = teik‖r‖−æz, t =
2k⊥

k⊥ + iæ
, æ =

√
u0 − k2

⊥.

(150)

The neutron momentum in output channel is also
split into longitudinal and transverse components
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k′ = k′‖ + k′⊥ez. Thus for the elastic scattering ampli-
tude (121) we get

f (0)(k,k′) = −ψ(k,k′) = 2πik⊥δ(2)(k′‖ − k‖)
k′⊥ + iæ
k⊥ + iæ

,

(151)

where k′⊥ = k⊥ for transmission and k′⊥ = −k⊥ for reflec-
tion. Note, that (151) contains diffraction forward scatter-
ing (k′ = k) which originates from finite transverse size of
the target (see the remark related to Eq. (77)).

Substituting (151) into (124) and integrating over solid
angle around the direction k′ = k‖ − k⊥ez, we obtain the
zero order cross-section of neutron elastic reflection from
the semi-infinite target

σ
(0)
R = S

k⊥
k
· (152)

Here S is the area of plane target surface, and k⊥/k =
cos θ, where θ is the angle of incidence. That is simply the
whole target area seen from incident neutron direction.
This result is natural for total reflection.

To calculate inelastic scattering to neutron state with
momentum k′ we need the solution ψ̄(k′, r) = ψ(−k′, r).
Since the subbarrier neutron in the output channel is back
scattered it is convenient to assume that k′ = k′‖ − k′⊥ez,
where k′⊥ > 0. Thus

ψ̄(r) = t′e−ik‖r‖−æ′z, t′ =
2k′⊥

k′⊥ + iæ′
, æ′ =

√
u0 − k′2⊥.

(153)

Vector B (139) is given by

B(q) = nβ(2π)2δ(2)(k‖ − k′‖ − q‖)tt′
q‖ + i(æ + æ′)ez
q⊥ − i(æ + æ′)

·

(154)

For simplicity we neglect imaginary parts of amplitude β
and potential u0 related to radiative capture. Thus, when
substituting (154) into (140) we will use

t∗t =
4k2
⊥

k2
⊥ + æ2

=
k2
⊥

πnβ
, (155)

and the same for t′∗t′. Taking into account (77), we have
for inelastic cross-section the following expression

dσ(2)
ie

dω
= S

k⊥
k

T

nMs2

k⊥
π4|ω|

∫
dk′δ(k′2 + 2mω − k2)

× k′2⊥
∫

dqδ(2)(k‖ − k′‖ − q‖)Λ(k′⊥,q). (156)

Here

Λph(k′⊥,q) = πδ

(
q2 − ω2

s2

)
q2
‖ + (æ + æ′)2

q2
⊥ + (æ + æ′)2

(157)

for phonon correlation function (145) and

Λhyd(k′⊥,q) =
αΓ 2

q4 + Γ 4

(
q2
‖ + (æ + æ′)2

q2
⊥ + (æ + æ′)2

−
q2
‖
q2

)
(158)

for hydrodynamic one (146), where Γ =
√
|ω|/D. Divid-

ing the inelastic cross-section over the transverse target
area Sk⊥/k, we get the differential probability per one
bounce dwie/dω for neutron transition to the state with
the energy ε′ = ε− ω.

Integration in (156) over q‖ removes two-dimensional
delta-function. Then the remaining delta-function allows
to perform integration over k′‖. The result is

dwie
dω

=
T

nMs2

k⊥
π4|ω|

√
k2−2mω∫

0

k′2⊥dk′⊥

×
π∫

0

dϕ

+∞∫
−∞

dq⊥Λ(k′⊥,q), (159)

where one should keep in mind relations

q2
‖ = k2

‖ + k′2‖ − 2k‖k′‖ cosϕ, k′2‖ + k′2⊥ = k2 − 2mω.
(160)

For the phonon model one can easily proceed further using
the delta-function in Λph and the small value of q2 =
q2
‖ + q2

⊥ = ω2/s2 � k2. The integration gives

dwph
ie

dω
=

2
π

T

Ms2

k0β

U

v⊥
s

√
ε′ − ε‖
U

, (161)

where k0 =
√

2mU/~2 is the momentum at the potential
barrier U , v⊥ = v cos θ is the normal component of the
incident neutron velocity, and ε‖ = ε sin2 θ is the energy
related to the incident neutron motion along the surface
plane.

For the hydrodynamic model we can perform in (159)
integration over q⊥ by closing the integration path in com-
plex q⊥ plane and summing over the pole residues. Then
it is useful to write the result in the form similar to (161)

dwhyd
ie

dω
=

2
π

αT

Ms2

k0β

U
f(ε, θ, ε′, d), (162)

where dimensionless function f , depending on ε, θ, ε′ and
parameter d = 2mD/~, is given by

f(ε, θ, ε′, d) =
2
πd

v⊥
v0

√
k2−2mω∫

0

k′2⊥dk′⊥

π∫
0

dϕL(k′⊥, ϕ).

(163)

Here v0 = ~k0/m is the boundary neutron velocity, and

L(k′⊥, ϕ) =
√

2
Γ 3

(1− 4λ2)3/4

1− 2λ2

×
((

1 +
1
µ

)
µ2 + λ2

1 + 2µ+ 2(µ2 − λ2)
− λ(λ + 1)

1 + 2λ

)
, (164)
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Fig. 1. Function f(ε, θ, ε′, d) from (163) for fixed initial neu-
tron energy ε = U/2 and angle of incidence θ = π/4 versus
final neutron energy ε′ and parameter d.

2λ2 =
q2
‖

q2
‖ +

√
q4
‖ + Γ 4

, 2µ2 =
(æ + æ′)2

q2
‖ +

√
q4
‖ + Γ 4

· (165)

To demonstrate the magnitude of the function f (163)
and its dependence on the final neutron energy ε′ and
parameter d we have performed numerical calculation of
double integral for typical values of initial neutron energy
ε = U/2 and angle of incidence θ = π/4. The results are
shown by solid lines in Figure 1 for d� 1 and in Figure 2
for d ≥ 0.1.

It is seen that the spectrum of inelastically scattered
neutrons has a peak in the vicinity of the initial neutron
energy. The left side of the broadened line corresponds to
the neutron energy loss. Its observation in experiment can
be interpreted as “cooling” of UCN. Surely, this process
is accompanied by “heating” presented by the right side
of the broadened line.

Near the initial energy parameter Γ =
√
|ω|/D =

k0

√
|ε′ − ε|/(Ud) is small with respect to æ + æ′ and

the main contribution into the integral comes from small
q2
‖(k
′
⊥, ϕ). Then one may simplify the function L (164) by

taking limit µ2 � (λ2, 1):

L ' 1√
2Γ 3

(1− 4λ2)3/4

1 + 2λ
, (166)

which allows us to evaluate in (163) all parameter depen-
dence and obtain

f(ε, θ, ε′, d) ' C v⊥
v0

1√
d

√
ε′ − ε‖
|ε′ − ε| · (167)

Here C = 0.47 is the value of a dimensionless integral.
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Fig. 2. Function f(ε, θ, ε′, d) for fixed ε = U/2 and θ = π/4
versus final neutron energy ε′ and parameter d. Solid lines –
the result of exact numerical calculation (163), dash lines –
approximation (167).

Approximation (167) is valid for |ε′ − ε| = |ω| � Ud,
and for large parameter d � 1 (167) may give a good
estimate not only for the small ω peak but for the whole
subbarrier area (as seen from Fig. 2).

The dependence on ω is governed mostly by the pa-
rameter d. For d � 1 the peak is more pronounced and,
when d decreases, becomes more narrow and high but with
fixed (independent on d) area. Indeed, using approxima-
tion (167) we obtain

whyd
ie =

∫
dwhyd

ie

dω
dω ' 4C

π

αT

Ms2

k⊥β

U

1√
d

Ud∫
0

√
ε⊥
ω

dω

=
8C
π

αT

Ms2 k⊥β

√
ε⊥
U
· (168)

The contribution to the peak from phonon model can be
neglected since it has smooth behavior and contains a sup-
pression factor v/s ∼ 10−3.

For d > 1 the small ω peak becomes less pronounced
(see Fig. 2) and the probability for neutron to remain
under the barrier after inelastic scattering diminishes as
1/
√
d (since in (168) the upper limit of the integral is

now U).

13 Conclusion

The general theory of neutron scattering is presented,
valid for the whole domain of slow neutrons from
thermal to ultracold. For thermal and cold neutrons, when
the multiple scattering in the target can be neglected,
the cross-section is reduced to that known for thermal
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neutrons, which is determined mostly by correlation func-
tion for the target matter (Sect. 6).

For UCN the rescattering is the dominant process, but
the theory can be simplified by exploiting small parameter
κu, i.e. the ratio of the amplitude of thermal vibrations
(for solid targets) or relaxation lengths (for liquids) to neu-
tron wave-length. In zero order approximation in κu (that
is equivalent to the scattering on a target with infinitely
heavy unmovable nuclei) it follows the known equation for
elastic scattering of UCN (9). Dynamical processes in the
target are taken into account in the next orders in κu and
result in inelastic scattering.

A detail analysis of inelastic scattering needs a sep-
arate publication. Here in Section 12 a specific exam-
ple was considered: scattering with small energy trans-
fer when scattered neutron remains below the potential
barrier. This quantitative example allows to make some
conclusions.

The value of cross-section is very sensitive to correla-
tion function used. The phonon model which gives the
main contribution for UCN excitation into thermal re-
gion is quite ineffective for small energy transfer when
space-time correlation processes are determined mostly
by relaxation (“hydrodynamic”) processes. Thus, the first
condition to obtain reasonable theoretical result for the
cross-section with small energy transfer is the choice of an
adequate correlation function.

The second factor that needs a reasonable physical
modeling is elastic potential suited for target matter in
each specific experiment. Consistence, uniformity, possi-
ble existence of surface layers, presence of hydrogen and
its distribution – all these may require a change in the
model potential and, therefore, the wave functions in the
input and output channels that enter the cross-section.

All effects connected with neutron spin are outside the
scope of this work. For target nuclei with non zero spin the
scattering length depends on spin-spin orientation. This
would require only replacement in all formulae of scatter-
ing length β by weighted average value. (The same pre-
scription is valid for isotope non-uniform target.) For large
wave-length of UCN the averaging is well justified.

Neutron spin interaction with target electrons (“mag-
netic scattering”) does not present any specific difficulty,
but require the inclusion of a new “spin-spin” correlation
function.

Spin-flip processes need special attention. Physically
interesting problem is the depolarization probability for
stored polarized UCN. This effect (as well as neutron cap-
ture (105)) belongs to incoherent processes. They are not
considered in this work. It is evident that incoherent pro-
cesses can be considered by simple perturbation theory
with “elastic” functions as zero approximation.

We are grateful to V.I. Morozov for valuable discussions. The
work was supported by RFBR grant 96-15-96548.

Appendix: An alternative expression
for scattering amplitude
We start with transformation of equation (94). First, using
the definition (92) for the matrixGjj′(νν′) and the expres-
sion (67) for the matrix ζjj′ (νν′), one obtains for Gjj′(νν′)

Gjj′(νν′) = −2π
m

∑
q

eiq(ρν−ρν′)

× 〈j|e−i(k−q)uνD̂−1
q ei(k−q)uν′ |j′〉. (A.1)

Then it is convenient to introduce the operators
−→
P jj′(ν) = 〈j|e−i(k+i∇ν)uν |j′〉,
←−
P jj′(ν) = 〈j|ei(k−i∇ν)uν |j′〉, (A.2)

where arrows on operators Pjj′ (ν) denote the direction for
gradients to act on functions of ρν . Thus, after evident
transformation with the help of (96) the matrix Gjj′(νν′)
takes the form

Gjj′(νν′) =
∑
j′′

−→
P jj′′(ν)Gj′′(νν′)

←−
P j′′j′(ν′). (A.3)

Equation (94) with the use of (A.3) can be written as

ψj(ν) +
∑
j′j′′ν′

−→
P jj′′(ν)Gj′′(νν′)

←−
P j′′j′(ν′)ψj′(ν′)βν′

= δijeikρν . (A.4)

Note the action of operators Pjj′ (ν) on exponents with k
and k′

−→
P jj′(ν)eikρν = δjj′eikρν ,

e−ik′ρν
←−
P jj′(ν) = e−ik′ρν 〈j|ei(k−k′)uν |j′〉. (A.5)

The scattering amplitude (98), due to (A.5), can be rep-
resented in the form

fij(k,k′) = −
∑
j′ν

e−ik′ρν
←−
P jj′ (ν)ψj′(ν)βν . (A.6)

Now let us act on all terms of (A.4) by the operator−→
P −1
j′j(ν) and sum over j. The right-hand side, due to (A.5),

remains unchanged and we obtain a new form of general
equation (94) where the matrix Gj(νν′) is “open” from
the left∑
j′

−→
P −1
jj′ (ν)ψj′(ν)

+
∑
j′ν′

Gj(νν′)
←−
P jj′(ν′)ψj′(ν′)βν′ = δijeikρν . (A.7)

We can now multiply (A.7) from the left by βν ψ̄
(0)
j (ν),

which is a solution of equation (131), i.e.∑
ν

βνψ̄
(0)
j (ν)Gj(νν′) = e−ik′ρν′ − ψ̄(0)

j (ν′). (A.8)
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Then summing over ν we get with the help of (A.8)

∑
j′ν

βνψ̄
(0)
j (ν)

−→
P −1
jj′ (ν)ψj′ (ν)

+
∑
j′ν

(
e−ik′ρν − ψ̄(0)

j (ν)
)←−
P jj′(ν)ψj′(ν)βν

= δij
∑
ν

βνψ̄
(0)
j (ν)eikρν . (A.9)

From (A.6) and (A.9) it follows for the scattering ampli-
tude

fij(k,k′) = −δij
∑
ν

βνeikρν ψ̄
(0)
i (ν)

−
∑
j′ν

(
ψ̄

(0)
j (ν)

←−
P jj′ (ν)ψj′(ν)βν

− βνψ̄(0)
j (ν)

−→
P −1
jj′ (ν)ψj′(ν)

)
, (A.10)

where the zero order term is explicitly extracted.
As the last step, we perform the action of the operators

Pjj′ (ν) on ψ̄
(0)
j (ν) and ψj(ν) and arrive at the desired

relation between scattering amplitude and exact solution
ψj(ν) of the general equation (94)

fij(k,k′) = −δij
∑
ν

βνeikρν ψ̄
(0)
i (ν)

−
∑
j′ν

〈j|eikuν
(
ψ̄

(0)
j (ρν + uν)ψj′(ρν)

− ψ̄(0)
j (ρν)ψj′(ρν − uν)

)
βν |j′〉. (A.11)

An expansion of (A.11) in uν gives in zero order (with the
use of (130) and (122))

f
(0)
ij (k,k′) = −δijψ(−k′,−k), (A.12)

which, due to time reversal invariance, equals to (121).

The first order term in (A.11) coincides with (134).
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